a 世界坐标系:
通常世界坐标系是一个三维笛卡儿坐标系。它是一个全局坐标系统,一般为右手坐标系。该坐标系主要用于图形场景中的所有图形对象的空间定位、观察者(视点)的位置和视线的定义等等。计算机图形系统中所涉及的其它坐标系基本上都是参照它进行定义的。
b 局部坐标系:
为了几何造型和观察物体方便起见,独立于世界坐标系定义的二维或三维笛卡儿坐标系称为局部坐标系。在局部坐标系中定义的"局部"物体,通过指定局部坐标系在世界坐标系中的方位,利用几何变换,就可以将"局部"定义的物体变换到世界坐标系内,使之升级成为世界坐标系中的物体。
c 观察坐标系:
观察坐标系通常是以视点的位置为原点,通过用户指定的一个向上的观察向量来定义的一个坐标系,缺省为左手坐标系。观察坐标系主要用于从观察者的角度对整个世界坐标系内的图形对象进行观察,以便简化几何物体在视平面(又成为成像面或投影面)的成像的数学演算。
d 视平面(成像面)坐标系:
它是一个二维直角坐标系统,主要用于计算物体在成像面上的投影。一般是通过指定视方向和视点到成像面之间的距离来定义成像面(投影面)。可进一步在投影面上定义一个称之为窗口的矩形区域来实现部分成像。
e 屏幕坐标系:
屏幕坐标系也称为设备坐标系,它主要用于某一特定的计算机图形显示设备(如光栅显示器)的表面的点的定义。在多数情况下,对于每一个具体的显示设备,都有一个单独的设备坐标系。
在定义了成像窗口的情况下,可进一步在屏幕坐标系统中定义称为视区的有界区域,视区中的成像即为实际所观察到的图形对象。换句话说,在世界坐标系中要显示的区域称为窗口,而显示器上相应的图形输出区域称为视区(或视口)。将世界坐标系中的一部分区域中的场景映射到设备坐标系的过程称为观察变换;将二维观察变换简单地称为窗口到视区的变换,简称为窗视变换。它可以分为以下几个步骤(见图3.1):
图3.1二维观察流程
|