变型空间法是Mitchell于1977年提出的一种数据驱动的实例学习方法。 该方法以整个规则空间为初始的假设规则集合H。依据示教例子中的信息,系统对集合H进行一般化或特殊化处理,逐步缩小集合H。最后使得H收敛到只含有要求的规则。由于被搜索的空间H逐渐缩小,故称为变型空间法。