例:
  设有公式集F={P(x, y, f(y)), P(a,g(x),z)},则λ={a/x, g(a)/y, f(g(a))/z}是它的一个合一。
  注意:一般说来,一个公式集的合一不是唯一的。
  定义:最一般合一
  设σ是公式集F的一个合一,如果对F的任意一个合一θ都存在一个置换λ,使得θ=σ・λ,则称σ是一个最一般合一(Most General Unifier,简记为mgu)
  一个公式集的最一般合一是唯一的。若用最一般合一去置换那些可合一的谓词公式,可使它们变成完全一致的谓词公式。
  归结原理方法与命题逻辑基本相同。但由于有变量与函数,所以要考虑合一和置换。